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ANALYSIS OF SEVERAL RELATIONS
AMONG ATMOSPHERIC STATISTICS

By R. A. Minzner* and P. Morgenstern'
SUMMARY

A statistically rigorous equation relating 5, T, and p, the
mean values of pressure, temperature, and density, respectively,
into a gas-law-like expression includes (in addition to the regu-
lar gas-law-like terms) a correction term proportional to the
covariance between density and temperature. The application of
the data from a set of 437 rocket soundings and several quasi-
homogeneous subsets of the same data showed the value of the
covariance term to be generally in the range of +1 to -1 per-
cent of P for altitudes of 30 to 60 km. Covariance term values
increased at greater altitudes and were largest for arctic
latitudes and winter months. The application of the same data
sets to another statistical equation relating 3c{pl/9z (the
derivative of the standard deviation of pressure with respect to
altitude) to o{p} (the standard deviation of density) in a form
suggestive of the hydrostatic equation (which relates 93p/3z to p)
Yielded very poor agreement, undoubtedly owing to large uncer-
tainties in the observed values of 3o0{pl}/d9z. An integral form
of the same equation, however, served to predict the observed
data rather well.

I. INTRODUCTION

It has been customary in the generation of model atmos-
pheres during the past decade (refs. 1-7) to use the following
procedure:

1. Determine a mean altitude profile for a single thermo-
dynamic atmospheric variable from available sounding

data,

2. Introduce this altitude profile into the hypsometric
equation and the gas law (or equation of state), and
compute the model altitude profiles of other thermo-
dynamic properties.

Thus, while the model atmosphere appears to be generally
consistent with the mean values of temperature, pressure, and
density deduced from sounding data, the model was derived as if
there had been but a single sounding. It may be demonstrated
that the mean value of density and the mean value of pressure

*Electronics Research Center, Cambridge, Mass.
tWalden Research Corporation, Cambridge, Mass.



at a particular altitude calculated directly from the basic data
of a number of soundings would not necessarily agree with the
corresponding values of density and pressure as deduced by the
above model-generation procedure. The implication of this situa-
tion is that while the simple form of the gas law quite accurate-
ly relates the thermodynamic properties of the atmosphere for a
single sounding, it does not in general rigorously relate the
corresponding mean values derived from a number of soundings.

The gas law (or equation of state for an ideal gas) relating
pressure, p, temperature, T, and density, p, can be expressed as

_ R
P"MOT (1)

where M is the mean molecular weight of air and R is the univer-
sal gas constant. The point values for p, p, or T may be ex-
pressed as the sum of the corresponding mean values, p, p, or T,
and of the departures, p', p', or T', respectively, as follows:

P=p+p' (2)
p=0p+ p' (3)
T=7T+ T (4)

Substituting Egs. (2), (3), and (4) into Eq. (1), and per-
forming the indicated multiplications produces a second form of
the gas law which, like Eq. (1), is also applicable only to a
single set of conditions, i.e., only to a single sounding at a
given altitude.

B+p' =g [T + 5T+ p'+T + p'e1'] (5)
Applying the averaging operator to both sides of Eg. (5) and

noting that

yields the result

b =g [pT + 57T (6)



where the quantity p'T' is commonly termed the covariance between
p and T. Thus, the procedure for developing model atmospheres
described above is strictly wvalid only if the covariance is equal
to zero.

Equation (6) can also be expressed in the alternate form

p = [p*T + o{p}eo{T}+xr{p,T}] (7)

2|

where o{p} and o{T} are the standard deviation of density and
temperature, respectively, and r{p,T} is the coefficient of
correlation between them. Since c{p} and o{T} are almost always
non-zero, this equation shows that the stated procedure for
developing model atmospheres is strictly valid only if the cor-
relation between p and T is zero. Both, Egs. (6) and (7), are
statistical forms of the gas law as derived by Bueill (ref. 8).

The covariance term in Eq. (6) represents the correction
necessary to make the gas law strictly valid when applied to mean
values for the thermodynamic properties. Stated another way, the
covariance term is a measure of the error incurred during the
development of model atmospheres by the method described earlier.
Normalizing this error relative to the total pressure and con-
verting the ratio to a percentage, the error may be expressed as

percentage contribution of covariance term = 100 — (8)

P

Further insight into the factors contributing to this error term
may be obtained by rearranging terms in Eq. (7) to produce

P =x=p*T [1 + oo}, "{T} rip, T}] (9)

2N

o

Thus the error term is the product of the coefficient of correla-
tion between density and temperature, and of the coefficients of
variation* of these two properties. The sign of the correction
term is determined by the sign of the correlation coefficient
since the other two quantities are always positive.

*The coefficient of variation is defined as the ratio of the
standard deviation to the mean value.



Another model relating statistical properties of atmospheric
thermodynamic variables uses the hydrostatic equation as its pri-
mary basis. The standard form of the hydrostatic equation is

B = —gep (10)

where g is the acceleration of gravity and z is geometric altitude.
It follows from Egs. (2) and (3) that the hydrostatic equation
also may be expressed as:

QE'_= —gop' .(ll)

From the basic statistical definition of the standard deviation,
we have

[o{p}]2 =p'*p'’ (12)

Differentiating both sides of this equation with respect to z
produces

Substituting Eqg. (11) into the right side of (13) yields

o{p} 2%%El = g T (14)

where g may be considered constant for a given latitude and given
height*. By means of the definition of the correlation coeffi-
cient, this equation can be expressed finally in the form

89ipl = g.0ip}-xip,p) (15)

where o{p} is the standard deviation of density as before, and
r {p,p} is the correlation coefficient between pressure and

density.

*These restrictions could be removed by using geopotential, H,
rather than the geometric height, z. This was not done in
the present study.



This is the expression derived by Buell (ref. 9) for the vertical
gradient of the standard deviation of pressure at a constant
height. It is analogous to an expression derived by Stidd

(ref. 10) for the vertical gradient of the standard deviation of
height on a constant pressure surface.

The validity of Egs. (6) and (15) was examined for the 30
to 200 km region of the atmosphere by Minzner and Morgenstern
(ref. 11). The data collected for this purpose consisted of 437
upper—air soundings covering the period 1947 to early 1965.
These basic data were collected from 48 different sources in-
cluding journal articles, institutional reports, and private
communications. The data sample includes a variety of measure-
ment techniques (falling-sphere, search-light probe, rocket-
grenade, pitot-static probe, etc.), and covers a world-wide dis-
tribution of 25 launch sites. The data set is considered to be
a unique collection of upper-air soundings; it has been published
in a separate technical report by Minzner, Morgenstern, and
Mello (ref. 12).

The 437 soundings were stratified into quasi-homogeneous
groups by a diurnal, seasonal, and latitudinal classification
scheme. The samples within each of these subsets were used to
validate the two statistical models, and disclose any observed
time and/or space variations in the results.

The model for the gas law was tested by evaluating the per-
centage contribution of the covariance-correction term to the
total mean pressure (see Eq. (8)). This quantity was calculated
at integral kilometer altitudes for each of the diurnal-seasonal-
latitudinal subsets of the data. The results were presented as
an extensive set of 110\machine-plotted graphs (ref. 11).

The model based on the hydrostatic equation was tested by
evaluating the expression:

| 394p} _ (~g-o{p}-rip,p}]
percentage difference = 100 — Saip’

92

(16)

The statistical guantities o{pl}, o{p}, and r{p,p} were calculated
at integral kilometer altitudes for each of the diurnal-seasonal-
latitudinal data subsets. The value of 30{pl/3z was calculated
using Stirling's central-difference formula (ref. 13) for
numerical differentiation:

£f{z.}-f{z .} f{z,. }-2f{z,}+2f{z ,}-f{z .}
do{p} 1 1 -1 2 1 -1 -2
3z Kz [ 2 - 12 +...](17)



where Az is the altitude increment between successive points (in
this case 1l km), and £{zij} is the value of o{pl at i altitude in-
crements removed from the central value. A minimum of three
points (one point on either side of the central value) and a
maximum of five points (two points on either side of the central
value) were used to evaluate the derivative. The results of the
evaluation of Eq. (16) also have been presented as a set of 110
machine-plotted graphs (ref. 11).

II. DISCUSSION OF RESULTS FROM THE GAS LAW MODEL
Variability of the Covariance Term in the Gas Law Model

The graphs presented by Minzner and Morgenstern (ref. 11l)
are accompanied by a preliminary discussion of the physical
implications. A more comprehensive review of the calculations
and graphical results described previously has been conducted
subsequent to the original publication. The results of this
analysis are summarized below in terms of observed significant
time and space variations.

1. Height Variations

a. Between 30 and 60 km, the magnitude of the correction
term is usually much less than 1 percent, and only
rarely exceeds 0.1 percent (to about 0.5 percent).

b. The magnitude of the correction term tends to be greater
for altitudes between 60 and 115 km than for altitudes
below 60 km, but its value is still usually small com-
pared with 1 percent for most of the stratified data
sets. The number of data cells for which the wvalues of
the correction term exceed 1 percent for short altitude
intervals increases with decreasing sample size at the
higher altitudes. To increase the sample size at these
altitudes, the data in different latitude belts were
combined into a single subset. Combining these data
introduces greater heterogeneity into the sample, re-
sulting in increased correction-term values which grow
to as much as 2 or 3 percent especially above 90 km.
(Only for those data cells which present grouping of
subsets across latitude bands is the sample size as
large as 9 or more above 90 km.¥*)

c. All the data were grouped into a single data set to pro-
vide a sample size of 9 or more extending above 115 km.

*A minimum sample size of 9 soundings was considered necessary
to provide significant results.



In this case the value of the correction term increased
to 5 percent between 115 and 155 km, whereas above this
region its value increased to as much as 25 percent at
210 km.

Latitudinal VvVariations

a.

For the altitude region 30 to 60 km, the value of the
correction term tends to increase with increasing lati-
tude. For the basic homogeneous data cells, this in-
crease varies from < 0.1 percent in the tropics to

< 0.5 percent in the arctic.

For data cells combined across seasons and diurnal
periods, the increased heterogeneity resulting from these
compressions causes the value of the correction term to
increase from 0.1 percent or less in the altitude region
of 30 to 60 km in the tropics to values as great as

2 percent for the same altitude region in the arctic.

In the altitude region of 60 to 100 km, the trend is not
so distinct since the number of available data sets is
considerably less. The variation seems to be from values
< 0.7 percent in the tropics to < 3.8 percent in the mid-
latitude and subarctic belts. No arctic values are
available at these altitudes.

Seasonal Variations

=

In the high latitudes, a strong seasonal variability is
seen whereby the value of the correction term tends to
increase from < 0.1 percent in summer to < 1.4 percent
in winter, in the altitude region of 30 tu 80 km.

No significant trend in the variability of the value of
the correction term as a function of season has been
noted in the low and middle latitudes, where the wvalue
tends to remain < 0.1 percent for the same altitude
region.

Diurnal Vvariations

Ae.

Because of a lack of sufficient numbers of comparable day
and night data, no definite trend can be said to have
been detected in the variability of the correction term
as a function of diurnal period. Only in the subtropi-
cal summer data could such a comparison be made. This
single comparison suggested a slightly larger value of
correction term for nighttime data than for daytime data.

When using data cells for which there has been a group-
ing across seasons, the value of the correction term for
tropical, daytime data showed no significant difference
from that for tropical nighttime data. The subtropical



data combined across seasons reflected the same diurnal
differences previously discussed for the ungrouped
summertime data for that latitude. No similar compari-
sons of seasonally grouped day and night data were possi-
ble for the other latitude belts because of insufficient
data.

c. For grouping across both season and latitude, the value
of the correction term for altitudes below 90 km is
slightly larger for the nighttime data than for the day-
time data; i.e., < 1.0 percent compared with < 0.5
percent. -

The observed time and space variations summarized above are
based on analysis of the gross features of the numerical results.
Within smaller altitude regions, values for the correction term
showed one or more random negative excursions which are large
compared with the remainder of that portion of the graph. A
-particular case in point is that illustrated by the graph for the
tropical, summer, diurnal-mean data cell (see Figure 1l). Sharp
negative excursions of the correction-term value to -0.4, -1.4,
and -2.4 percent are seen to exist at 51 , 58, and 68 km, re-
spectively, whereas in the remainder of the altitude region
between 35 and 65 km the term has values of < 0.1 percent. These
appear to be the result of spurlous density values at isolated
altitudes and are most evident in data cells of small sample
size. Consequently, these excursions have been largely disre-
garded in the search for general trends.

Analysis of the Covariance Term

For a better understanding of the factors influencing the
variability of the covariance term, it is convenient to review
the second term of the bracketed factor in Eg. (9). Of the three
factors in this expression, the ratio o{p}/p as well as that of
o{T}/T vary only slowly with altitude. These two ratios have
values which are greater than zero and less than +1.0 for all
cases considered. The value of r{p,T} by definition may never
exceed the range of -1.0 to +1.0. The sign of the triple product
is determined by the sign of r{p,T}, and the entire term vanishes
when r{p,T} passes through zero.

A more detailed review of the computed, but unplotted values
of o{p}/p and o{T}/T, shows that both guantities tend to increase
with altitude. The first quantity ranges from as little as 0.05
or less at 30 km to 0.5 or more at 200 km. The second ranges from
as little as 0.02 or less at 30 km to 0.4 or more at 200 km.

Such changes with altitude are readily explained by a combination
of greater relative variability in their parameters and increased
measurement uncertainty of both p and T with increasing altitude.
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At any particular altitude, the values of both ratios tend to be
smaller for homogeneous data than for heterogeneous data; i.e.,
smaller for data associated with a single latitude band, a single
season, and a single diurnal period than for data which have not
been segregated according to these variables. Because of these
variations in the values of the two ratios, we might expect to
find the values of the covariance or correction term to increase
rather uniformly with increasing altitude and with increasing
heterogeneity of other conditions of observation, provided that
. the value of r{p,T} were constant. The fact that the value of
the correction term does not increase uniformly with altitude is
due to a number of factors:

1. The value of o{p}/p does not increase smoothly with
increasing altitude. Spurious values of density increase
the value of o{p} to a much greater extent than they
influence the value of p. Hence, particular altitudes
or limited altitude regions occasionally have abnormally
large values of o{pl}/p.

2. Anomalous measured values of p at one altitude produce
associated spurious computed values of T at another
altitude. Thus, a large value for o{T}/T at a given
altitude may be a consequence of a large value of o{pl}/p
at another altitude.

3. In addition, since single observations of p and T at any
altitude are related by the gas law, a spuriously large
value of p will have an associated spuriously small value
of T, at that altitude. The converse also applies. This
situation enhances the generation of the negative value
of r{p,T} at the same altitude, and this value of r{p,T}
tends to override the value which would otherwise be
associated with that altitude region.

4, Investigations beyond the scope of this study suggest
that various factors cause the value of r{p,T} to vary
in a somewhat systematic manner with altitude, latitude,
and possibly with season. It is sufficient to indicate
at this point, however, that r{p,T} is far from being
constant.

The relative influence of the factors ov{pl}/p, o{T}/T, and
r{p,T} on the values of the correction term depicted in Figure 1
are illustrated in Figure 2. It is apparent that the triple pro-
duct of the three factors and the implicit relationships are such
that spurious local values of density produce strong negative
values in the altitude profile of the value of the correction
term. Assuming that such spurious density values are not truly
characteristic of the atmosphere but merely represent sampling
fluctuations, it appears reasonable to disregard such random ex-
cursions in the graphs of the altitude dependence of the correc-

tion term.

10
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data cell

Summary of the Analysis of the Gas-Law Model

In summation it appears that the absolute magnitude of the
correction term of the statistical form of the gas law increases
with increasing altitude and with increasing latitude, but gener-
ally it remains below 1 percent for altitudes below 80 to 90 km,
when a significant sample size exists. The value of the correc-
tion term seems to be greater in the winter than in the summer
for high-latitude data, but no such variation is seen for low-
latitude data. Time of day does not appear to influence strongly
the value of the correction term in our limited data sample.

11



Over broad height intervals below 60 or 70 km the correction-
term values for homogeneous data remain near 0.1 percent. This
value is similar to that reported by Wood and Spreen (ref. 14)
for homogeneous data at altitudes below 30 km.

For most model-atmosphere requirements at altitudes below
120 km, the value of the correction term which should be
applied in computing mean pressure is usually small compared with
other uncertainties in the models, and the application of this
correction term may be omitted. Consequently, for altitudes
below 120 km, the procedure commonly used to develop model
atmospheres appears to be a valid one. Sophisticated models
based on observed data, however, might well be based on calcu-
lations which include such a correction term, particularly for
altitudes above 120 km.

IITI. DISCUSSION OF RESULTS FOR THE STATISTICAL FORM
OF THE HYDROSTATIC EQUATION

Description of the Graphical Data

The validity of the statistical model (Eg. 15) as applied to
numerical data was determined by evaluating Eg. (16). This
quantity was found to be highly variable with changes of one or
two orders of magnitude between adjacent values accompanied by
frequent change of sign. The unconnected dots in Figure 3 illus-
trate this variability for a typical data cell. This function is
associated with the left ordinate of the graph which is designated
PERCENT DIFFERENCE. Any computed values beyond the indicated
range of the ordinate, *100 percent, have been truncated at those
limits in the plotting procedure.

To improve the readability of this and similar graphs, only
an envelope of the successive maxima and minima of the percent
difference was plotted as a function of altitude. The graph of
such an envelope for the same data cell depicted in Figure 3 is
represented by the pair of dotted curves in Figure 4.

The series of + signs in each of Figures 3 and 4 represent
the graph of o{p} as a function of altitude. The ordinate for
this graph is given at the right-hand side of the figure. The
scale is logarithmic over the range 102 to 10-4 nt/m? and the
general linearity of the curve shows the near exponential height
dependence of the statistic.

12
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Interpretation of the Percent Difference Validity Test

A review of the results given in Figure 4 and in the many
similar graphs depicting the same model for other data sets, as
presented by Minzner and Morgenstern (ref. 11) suggests that the
agreement between the two sides of the statistical model is
rather poor. The truncation procedure used in the preparation
of these graphs is such that in many instances the true differ-
ence is greater than the graphs suggest. However, it should be
noted that the greatest departures occur in the regions where
the curve of o{p} shows rapid changes of slope, resulting in poor
agreement with the model. In height regions where the profile of
o{p} is nearly linear on this graph, i.e., the derivative is
nearly constant such as the 45 to 60 km interval, the agreement
is much more favorable.

A better indication of the relative smoothness of the indi-
vidual terms in this model is shown by the curves in Figure 5.
The crosses represent the values of the derivative on a logari-
thmic scale* while the solid line in Figure 5 represents the
values of the right-hand side of Eg. (15). A visual comparison
of these curves shows the greater variability in the derivative
term. However, both curves are reasonably smooth and in relative
agreement over that portion of the altitude range for which the
sample size exceeds 20.

The influence of greater sample size is illustrated by the
results shown in Figure 6 for a more populous data cell. The
region of reasonably good agreement extends over a much larger
altitude interval in this instance than in Figure 5. Some rela-
tively large differences are observed in Figure 6, primarily in
the region of rapid decrease of sample size, and one positive
value of the derivative is found in the same region.

Figures 5 and 6 both show that neither side of Eg. (15)
represents a very smooth function of altitude. The derivative
term is highly sensitive to local changes in slope of the o{p}
profile produced by measurement uncertainties in the data. This
suggests that further smoothing of the data is desirable for
evaluation of the differential-equation model in the form of
Eg. (15). Section IV contains a description of an alternate form
of the modél which provides implicit smoothing of the data.

*Because 0{p} is a decreasing function with altitude, the deriva-
tive generally is negative. Hence the absolute values have
been plotted.
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Figure 5.- Altitude profiles of the right and left sides
of Eg. (15) evaluated for the tropical, autumn,
diurnal-mean data cell

Summary on the Degree of Validity

The analysis of this model suggests that the number of
soundings available for use in the current study generally is
inadequate to establish the validity of the model. This is a
consequence of the sensitivity of the statistical variables to
sampling fluctuations in the data. The model yields the best
results for those altitude regions containing the largest sample
sizes.
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4

Iv. REVISION OF STATISTICAL HYDROSTATIC EQUATION MODEL

The results of the previous section have shown that the
statistical model of Eg. (15) is highly sensitive to random
sampling fluctuations of the meteorological variables. The
nearly opposite character of differentiation and integration
suggests that an integral form of the hydrostatic-equation model
may be developed to overcome the limitations of the differential
form. Equation (15) can be integrated with respect to altitude
to yield

z
o{p}z = o{p}o - J; geo{p}ex{p,pldz (18)
o

where the subscript (y) refers to the uppermost altitude of the
height interval of integration. The quantity o{ply is the stand-
ard deviation of pressure at height z5. This model can be simpli-
fied further if the acceleration of gravity is assumed to be con-
stant. The validity of this assumption is examined in greater
detail in Section V where it is established that the resulting
error is not significant.

Equation (18) with (g) assumed constant may be evaluated by
use of an appropriate numerical integration technique. Because
o{p} is nearly an exponential function of height, a logarithmic
integration formula is desirable. Minzner (ref. 15) has tested
several simple integration techniques on atmospheric variables
and found that the logarithmic trapezoidal rule yielded satis-
factory results when applied to density profiles. Application of
this rule to Eg. (18) produces

3Zh (zs - zo_q) (05 - Q4
o{p}i = O{p}o - gggl (Zj znZ%5;Zéjil) J-l) (19)

where

0 o{pl r{p,p}

and the subscript (i) refers to the number of integer kilometer
increments below z,. A more detailed discussion of this integra-
tion method is given in Appendix A of this report.

Equation (18) as approximated by Eg. (19) was evaluated
numerically with the same set of data used to develop Figure 6.
The observed value of o{pl} at Zo is used as an estimate of
o{p}l,. The effect of sampling errors in o{pl, on the values
of O?p}i as derived for the right-hand expression is dis-
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cussed further in Appendix A. A comparison curve, the altitude
profile of o{pl} was calculated directly from observed values of
atmospheric pressure. Figure 7 shows the results of these com-
putations. These curves are significantly smoother than the
results from the differential-equation model shown in Figure 6.
A comparison of the two curves in Figure 7 shows that the dif-
ferences are smaller than in Figure 6, and now tend to be sys-
tematic in character. The discontinuities still exhibited by
these curves generally are associated with sharp changes in the
sample size of the data set.

The validity of this model can be examined in a manner simi-
lar to that used for the differential-equation model, namely:

(20)

oip}

percentage _
difference 100 [

c{p}i -.c{p}}

(The direction of the difference in the numerator of Eg. (20) has
been reversed to be consistent with the implicit signs in Eq.

(16) introduced by negative slopes.) The altitude profile of

Eg. (20) for the same set of data used in Figures 6 and 7 is
shown by the dashed curve in Figure 8. The percent difference

in this graph shows a maximum of 60 percent error with large
segments of the profile indicating less than a 15 percent
difference. A direct comparison of these results with those for
the differential equation model also is provided by the solid
curve in Figure 8. The departures in this latter case are seen
to be substantially greater. It is apparent that the integral
version of the model provides a more suitable basis than the
differential model for investigating the existence of latitudinal,
seasonal, or diurnal variations in the validity of the statistical
model.

V. CONCLUSIONS

The objective of this study has been to evaluate the
validity of two models for relating the statistics of atmospheric
pressure, temperature, and density. These models were applied to
data assembled from 437 upper-air soundings for the region 30 to
200 km. The results of these calculations showed that the
covariance term of Egq. (7) was generally in the range *1.0 per-
cent of the mean pressure for the altitudes 30 to 60 km. In this
height interval the covariance was largest at upper altitudes,
in arctic latitudes, and during winter months. Above 60 km the
covariance term exceeded *1 percent in many cases but these
results are less reliable because of the more limited number of
sounding available for analysis, particularly at the higher
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latitudes. Because of a lack of sufficient comparable day and
night data, no definite trend can be said to have been detected
in the variability of the covariance term as a function of the
diurnal period.

The analysis of the model given by Eq. (15) suggests that
the number of soundings available for use in the current study
generally is inadequate to establish the validity of the model.
This is a consequence of the sensitivity of the statistical
variables to sampling fluctuations in the data. The model yields
the best results for those altitude regions containing the largest
sample sizes. Because of these limitations, a revision of the
basic model has been proposed changing it from a differential
equation into an integral form. The revised model was evaluated
for a single case by means of a logarithmic trapezoidal integra-
tion scheme. A comparison of these results with those from the
original model suggests that the integral form provides a more
suitable basis for future investigations of the existence of

latitudinal, seasonal, or diurnal variations in the validity of
the model.

Gravity variations as a function of altitude and of latitude
were considered in the initial processing of the individual
soundings. In the subsequent analysis of the data, the results
of many soundings were grouped according to geometric altitude
both within a latitude band, and across latitude bands. This
grouping at identical geometric altitudes across latitude bands
is now seen to be a less desirable procedure, and has perhaps led
to larger values of standard devitations of density and pressure
than would have resulted if the data had been grouped according
to equal values of geopotential (refs. 16, 17).
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APPENDIX A

NUMERICAL EVALUATION PROCEDURES

The purpose of this appendix is to discuss qualitatively
how the magnitude of the uncertainties in the model values for
o{p} are influenced by the choices in each of two procedures
in the evaluation of the expression:

. _
olp} = olply - [ olp}erio,p} az (a-1) 4

z
(o] —

The first of these procedures is the numerical evaluation of
the integral term by means of a quadrature formula. Several
quadrature formulas were considered from which the logarithmic
trapazoidal rule was selected as providing a satisfactory
approximation to the actual integral. The merits of some
alternate choices are discussed later. The uncertainty which
would be introduced into the value of o{p} by selecting a less
suitable quadrature formula is small, however, compared with
the uncertainty introduced into o{p} by the observational
uncertainties in o{pl}-xr{p,p}.

An even greater uncertainty is introduced into o{p},
however, by a poor choice in the second procedural item, i.e.,
that dealing with the direction of integratipn, upward or down-
ward. It will be shown that only downward integration yields
acceptable values of percent uncertainty over the entire region
of integration, although upward integration as implied by
Eg. (A-1) may, in some instances, be satisfactory for a very
limited region at the lower end of the range of integration.

With upward integration the model values of o{pl are
determined as a small difference between two large quantities,
an intuitively undesirable procedure. It will be shown that in
such a situation, the percent uncertainty propagated into the
difference o{pl is an amplified weighted average of the percent
uncertainties of both the terms comprising the difference. This :
propagated uncertainty in o{p} is never less than the percent
uncertainty of the minuend, which is the integration constant,
and grows without bounds as z increases.*

With downward integration, however, the model values of
o{p} are determined by a summation operation as in Eq. (A-2),
which comes directly from Eq. (A-1):

*Both lower-case and upper case forms of Z used interchangeably in this appendix
signify geometric height.
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Z

. o
o{pl} = o{p}o +f olplex{p,pl az (A-2)
Z

In such an operation, it can be shown that the percent uncertainty
in the sum, is a normal unamplified weighted average of the
percent uncertainties of the addends, and consequently never
exceeds the percent uncertainty of the larger addend. This will
be seen to be the integral term for all but the first few kilo-
meters of the range of integration.

The weighting feature operates so as to minimize the effect
of the percent uncertainties of small quantities involved in the
sums or differences, even when these small quantities have very
large uncertainties. This feature is most apparent and partic-
ularly beneficial in the summation representing downward integra-
tlon, where the magnitude of the constant of integration o{p}
is very small compared with that of the integral term over most
of the range of an extended integration, but where the percent
uncertainty of o{p}, is large compared with that of the integral
term. This large percent uncertainty in the 1ntegratlon constant
is effectively eliminated from the uncertalnty in model values
of o{p} by the weighting feature.

Both the weighting and amplification features which will
be demonstrated analytically in the next section, favor the
downward direction of integration. This conclusion is readily
substantiated from an analysis of the error expressions associated
with each of Egs. (A-1) and (A-2).

ERROR ANALYSIS

To simplify the form of the expressions showing the error
propagation into o{pl within each of Egs. (A-1) and (A-2), it
is desirable to simplify the symbolic notation of the terms of
these equations prior to writing the error expressions. Thus,
the quantity being computed, o{pl, is changed to Q; the constant
of integration o{pl}, is changed to C, and the entire integral
term is designated by I. Then, using the Gaussian method we may
relate the absolute uncertainties 6Q, 8C, and 8I in Q, C, and I
respectively, through partial derivatives as follows:

2 2
80 =1J(%% . GC) + (g% . GI) (A-3)
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Because the variables C and I in Egs. (A-1) and (A-2) appear
only in the first power, in separate terms, and without
coefficients, it follows that:

50 =4¢(6C)2 + (8T)2 (A-4)

Designating percent uncertainties in Q, C, and I as PUQ, PUC,
and PUI, it follows that:

= .—SC_L. Y -
§C = C ¢ = 100 C PUC (A-5)
and
- N S . -
I = I T = 100 I PUI (A-6)

These forms are equally correct when applied to the percent
uncertainties of both Egs. (A-1) and (A-2). The conversion
of §Q to a form involving PUQ, however, differs in the two

cases, and we have:

§0 = Q - §% =L . (c-1) - pUQ (A-7)

applicable to Eg. (A-1), and:

§0 = Q o §% = L . (c+1) - PUO (A-8)

applicable to Eg. (A-2).

Combining Egs. (A-4), (A-5), (A-6), and (A-7) into one equation,
and then combining Egs. (A-4), (A-5), (A-6), and (A-8) into
another equation we obtain:
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Q(cl . PUCl)2 (T PUIl)2
PUQl -

—— (A-9)
Cy I,
for upward integration, and:
{(cz- + pUC,)? + (I, + PUL,)>
PUQ2 : (A-10)

C2 + I2

for downward integration. The subscript 1 added to the symbols
Q, C, and I in Eg. (A-9) designates the particular values of

these quantities applicable to Eg. (A-1l) for upward integration.
The subscript 2 employed similarly in Eg. (A-10) designates the
particular values applicable to Eg. (A-2) for downward integration.

NUMERICAL VALUES

In order to investigate the error amplification as well as
the weighting effects of Egs. (A-9) and (A-10) with some degree
of guantitativeness, it is necessary to have some reasonable
estimates of the values of Cis Ch, I and I,, as well as the
uncertainties in Cy; and C These all follow from an estimate
of the altitude proflle o% Q = o{p} and its uncertainty. The
values associated with the lower and upper ends of such a profile
serve respectively as reasonable values for the constants C; and
C, and their uncertainties. With these quantities we can derive
estimates of the altitude profiles of Ij and I, through the
following relationships stemming directly from Egs. (A-1) and
(A-2) respectively:

I. =¢C;, -Q (A-11)
(A-12)

The number of upper-atmosphere observations available for
analysis falls off rapidly with increasing altitude. The
decrease occurs nearly stepwise in three height regions: (1)
in the vicinity of 30 kilometers, (2) in the vicinity of 50
kilometers, and (3) in the vicinity of 90 kilometers. At heights
up to about 28 kilometers, the values of atmospheric pressure
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and density, as well as their respective standard deviations,
o{p} and o{p} are reasonably well known from many thousands of
observations. For purposes of this discussion, the value of
o{p} at an altitude of 28 kilometers, the_low limit of the
altitude profile is taken to be 1.45 x 102 nt m~2, with an
uncertainty of * 6 percent. The same percent uncertainty is
assumed for the value of o{p} which is taken to be 2.08 x 10~3
kg m~3 at this altitude. The 28-kilometer value of o{pl} and its
uncertainty have been adopted as C; and 8C; respectively.

Above 90 kilometers height, the number of atmospheric
soundings decreases rapidly with increasing height. Between
90 and 108 kilometers, the available data sample for the study
reported in the main body of this paper for any particular
height level, summed over all observation sites, decreased from
84 to 37 samples. For this latter altitude, the value of o{p}
was calculated to be 2.7 x 10~3 nt m~2, while the value of o{p}
was calculated to be 3.69 x 1071 kg m™2 (ref. 11). This value of
o{p} has been adopted for the upper limit, of the altitude pro-
file of o{p}, where the percent uncertainties of both o{p} and
o{p} are assumed to be * 100 percent. This value of o{p} and
its uncertainty have been adopted for Cy and 8C, respectively.
The 108-kilometer value of o{p} is seen to be five orders of
magnitude _smaller than the adopted 28-kilometer value of
1.45 x 102 nt m~2, It is apparent that o{p} or Q must vary
approximately exponentially, i.e., in the manner of KCAZ,
between these two altitudes. Using the cited end-point values
of Q to define the function, it can be shown that the value of
K is 6.504 x 103 nt m~3, and that of A is 1.359 x 1074 m-
The value of o{p} is assumed to approximate a similar function
ke™%Z such that the cited end points imply a value of
9.592 x 10~2 kg m~ S for k, and a value of 1.368 x 1074 m~1 for a.

UPWARD INTEGRATION

With the value of Cj; and the altitude profile of 2
established, Eg. (A-11l) yields the altitude profile of Ij, an
approximation of which is shown in Figure A-1l. For the sake of
simplicity, no uncertainty band has been indicated for this
quantity although the uncertainty in I is discussed below. The
adopted value of C; is also shown in this figure, but in this
case an uncertainty band of * 6 percent is given. The value of
C; and its uncertainty band are given by three lines Cy 1, C1 2/
and C , .where Cq 5 represents the adopted value of
1.45 ¥°102 nt m~2, "and where- Cy ; and Cy 3 represent, respec-
tively, the + 6 percent and -6 percent éépartures from the
adopted value. It is apparent from the figure that except for
the very lowest portion of the range of integration, the value
of I; is of the same order of magnitude as the value of Cj.
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For altitudes above the lowest 4 kilometers of the range of
integration, the value of I is greater than one half the value
of C;. Thus, for upward integration, it is apparent that except
for the lowest altitude within the range of the integration, the
magnitude of C; and I; are such that their percent uncertainties
both contribute significantly to PUQ, as expressed by Eg. (A-9).
For these altitudes, the relative magnitude of the two terms
under the square-root sign depends primarily on the relative
magnitudes of the percent uncertainties.

At Z,, the initial altitude, I is zero and Eq. (A-9)
reduces to:

J(Cl . puc,)?
PUQl = = PUC (A-13)
c; 1

As 7 increases above Z_, I, increases rapidly. At the same time,
the growing value of (%l . PUI]_)2 increases the value of the
numerator of Eg. (A-9) to some value greater than /(Cl + PUC1)Z<,
while the growing value of I; decreases the value of the
denominator to some value less than Cy. The two effects occurring
simultaneously cause the value of PUQq to increase rapidly from
its minimum value of PUCy. At an altitude of about 20 kilometers
above the bottom of the range of integration, where I, approaches
a value of about 0.9 of C1, the value of PUQ; becomes about 20

times that of PUC,. As the integration proceeds to even greater
altitudes above the initial level, the value of PUQ, approaches
infinity as (C1 - I,) approaches zero, essentially independent

of the values of PUC; and PUI;. It is apparent from Figure A-1
that for a * 6 percent uncertainty in Cq and no uncertainty in
I, the value of (Cl - Il)' and, hence that of Q; could become
zero at an altitude Z,, as low as about 53 kilometers. At
greater altitudes, the values of Q would be meaningless. An
uncertainty band of * 6 percent associated with I would expand
the point Z, to a region extending from a lower limit of about
43 km to the top of the range of integration, 108 km. Within
this region, the model value of Qq would be meaningless.

From this analysis, it is apparent that upward integration

yields reasonable values of Q1 and PUQ4 only at altitudes very
close to the reference level.
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Figure A-l.- Relative values of the two terms of Eq. (A-1)
as a function of altitude for upward integra-
tion from altitude z

DOWNWARD INTEGRATION

The introduction of the value of the integration constant
Cy, as well as the estimated altitude profile of Q into Eg. (A-12)
yields an estimate of the altitude profile of I,, the integral
term associated with downward integration. An approximation of
this gquantity is depicted in Figure A-2. As in the case of Iy,
simplicity precludes the depicting of an uncertainty band for
I,. For downward integration, from high to lower altitudes,
tﬁe value of the integration constant Cp is very small compared
with the value of I; for much of the range of integration. The
adopted value of C, = 2.7 x 10”3 nt m~2 with an assumed uncer-
tainty band of * 100 percent, if drawn to scale in Figure A-2,
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could not be distinguished from the abcissa of the graph.

Though not apparent from the graph, it may be stated that the
value of I, grows from zero to about ten times the value of C,
as the altitude decreases about 18 km from Z,. From this point,
the value of I, continues to grow by a factor of about 10 for
each successive l17-kilometer decrement in Z included within the
integral. From this information, one may show that C, is very
small compared with I, for all but the upper 20 to 30 kilometers
of the range of integration. Thus, as the increasing range of
altitudes encompassed by the integral becomes greater than 30
km, the contribution of PUC, to PUQ, through Eg. (A-10) becomes
negligible even for an uncertainty in Co as large as 100 percent.

180 —

100 —
VALUE OF INTEGRAL TERM 12

50 [—

STANDARD DEVIATION OF PRESSURE {nt/m?)

o | | | I $ 1 ) J
30 40 50 60 70 80 90 100 ) 1o
0
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Figure A-2.- Values of the integral term of Eg. (A-2)
as a function of altitude for downward
integration from altitude =z

For this situation, (2, - Z) > 30 kilometers, Eqg. (A-10)
reduces essentially to:

Ife

PUQ, (r-14)
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At altitude Zo5, where I, is zero, Eg. (A-10) reduces exactly to:

{(c2 . PUC2)2

PUQ., = = PUC (A-15)
2 C2 2

so that PUQ, = PUCy, which is * 100 percent for the adopted

conditions.” For altitudes within the upper 30 kilometers of
integration, the uncertainty PUQ., decreases from a maximum of
PUC, at Z, toward the value of PBI as the altitude decreases
from Z,. Thus, Eg. (A-10) does no% explode for any values of
7, and reasonable values of uncertainty of Q are obtained for
the entire range of integration.

Obviously, if only one direction of integration is to be
selected, downward integration is to be preferred over upward
integration. If the value of PUI; at 28 km altitude from down-
ward integration is greater than PUC;, upward integration may
possibly yield a slightly more precise value of Q in the immediate
vicinity of 28 km. The uncertainty of such a value of Q will,
however, rapidly grow to unacceptable values if this upward
integration process is carried out for more than a few kilometers.

QUADRATURE FORMULA

A somewhat secondary but necessary consideration effecting
the overall uncertainty of the model values of o{p} involves
the selection of a quadrature formula to evaluate the integral
term of Egs. (A-1l) and (A-2). The selected quadrature formula
serves as the basis for the development of an uncertainty
expression for the integral term. The reason for designating
the selection of a quadrature formula as a secondary consideration
is due to the fact that while different normally acceptable
gquadrature formulae approximate the actual integral with varying
degrees of accuracy, the error introduced by the poorest of
these approximations is very small compared with other uncertain-
ties. Three relatively simple formulas which have been considered
are: (1) the linear trapezoidal rule, (2) the logarithmic
trapezoidal rule, and (3) Simson's rule. Minzner (ref. 15) has
shown the logarithmic trapezoidal rule to be a good approxima-
tion of the definite integral for any function whose logarithm
is nearly a linear function of the independent variable. Since
the integrals Ij and I, were both shown to meet this condition,
the logarithmic trapezoidal rule has been adopted. Using this
rule, we may rewrite Eg. (A-1l) as well as Eq. (A-2) as:
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.
I
e

c{p}i = c{p}o - g

.
i
i

where

g = 9.80665 m sec 2,

z = height in meters,
V = of{pl-rip,pl,

i = the number of increments included in the quadrature
procedure thereby involving a total of (i + 1) altitudes.

With downward integration, the value of (Vj - V4-1) is positive,
the value of Z4_.1 is greater than Z;, such” that (Zj - Zj_l) is
negative, and %his negative sign coupled with the hegative sign
of the summation term effectively makes o{pl; equal to the sum
of two positive terms. The expression resulting from Simpson's
rule would probably yield a slightly better approximation to
the actual integral of Eg. (A-2) than that resulting from the
logarithmic trapezoidal rule as shown in Eq. (A-16), but at

the expense of considerably more complication. The linear
trapezoidal rule would yield a somewhat poorer approximation,
particularly in cases where the data points are distributed
nonuniformly with altitude. The added uncertainty introduced
into o{pl} by the poorest of these three quadrature formulas
would be small, however, compared with the uncertainty which

is propagated into o{pl through the observational errors in the
constant of integration and in the combined variable V, both

of which enter into any quadrature formula that may be used to
exXpress I.

The precise form of the equation used to express the
uncertainty of the integral term depends directly upon the
particular quadrature formula used, and while the form of the
uncertainty expression related to each of the several quadrature
formulae differs extensively, one from the other, the value of
the computed uncertainty I for any common set of conditions
is not apt to differ greatly regardless of the form of the
uncertainty equation from which it is computed.

Again, the Gaussian method serves as the basis for the

generation of the uncertainty expression, such that §I the
absolute uncertainty in the integral term is given by:
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=i+l NS
i[_ - 6V 2
- BVj_l j-1

(A-17)

u.
I

For each related pair, Z; and Vi, of a data set, the un-
certainty in both members of %he pal% may be lumped into one
of the members V., with the other member Z. being considered
exact. Consequently, the right-hand side gf Eq. (A-17) may
be simplified so that 6I may be expressed as:

F=i+1

2
> s - evyy (a-18)
=\

I

This expression implies the taking of the partial derivation
of T with respect to each of the series of variables V
-y V-1, Vi, Vigq, ***> Vi1, Vij. The quantity I is 1tse}f
expressed a5 a Series, formed in such a manner that each member
of the series V, to Vj, except these two end values, appears in
two successive terms of the series. Thus, in semi-expanded
form, the integral term of Eg. (A-16) may be expressed as:

I = -g{(2,-2) In (v, V) 1TH (W, =V,) + (2,-2) [1n(V,/v) 171 (V,-vy )
-1
+ +(Z5=2, ) n(Vy /v, )17 (V=5 )
-1
+ (Zj+l—Zj)[ln(Vj+l/Vj)] (Vj+l—Vj) + e
1 (A-19)
(2 172y Q) IV o/ )T TV Y5 ))
-1
+ (Z -z, l)[ln(V /Vl l)] (Vi—Vi_l)}.

The consequence of this expression is that the partial derivative
of T with respect to V5, and the partial derivative of I with
respect to V; both result in expressions involving only one term
of the series approximation of I. The partial derivative of I
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with respect to all other members of the series of variables,
i.e., V1 to Vi-j results in egpressions involving two successive
terms of the series approximation of I. Thus:

v—i -1 - 1n{v1/v°)] y 21
[(21_20( [1n(vl/v°) >( 0):|

fi=i+1 ~ jmi-1 Sroa e [ln(vj/v -1) Lo N PR 1n(vju/vj) 2
jgl (avj 1 1) =g JZ-; H(zj—zj_l Y3 [ln(v']/vj_l)] ) (54272 J( 1n(v +1/V 9‘(6%)]

. _1.l-1+[1n(v/vi 1)] N
[( i i-l)</ [ln ("1/"1-1)] i (A— 20 )

The particular arrangement of the terms under the radical sign
is to emphasize the similarity of two groups of terms.

It has already been shown that, for the purposes of this
study, o{p} may be assumed to be a simple exponential function
of altitude varylng from 2.083 x 10-3 kg m~3 at 28 kilometers to
3.687 x 10-8 kg m™> at 108 kilometer altitude. Since r{p,p}
usually has a value between 0.6 and 1.0, and never exceeds 1.0,
we may approximate r{p,p} by unity of all altitudes, in which
case:

Vv = o{p} = ke %% (A-21)

where
-2

o
I

9.592 x 10

o = 1.368 x 10 2

If the altitude increments of successive terms on the
right-hand side of Eq. (A-20) are equal, the uncertainty
expression can be considerably simplified since:

a = 1.1466 (A-22)
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j-1 _ "i-1 _ 1 _ _-alAz _ _ _
S =v =3 °-¢ = b = 0.8722 (A-23)
| i
ln(Vl/VO) = ln(Vj/Vj_l) = ln(Vj+l/Vj) = ln(Vi/Vi_l)

ln a = aAz = d = 0.1368 (A-24)

With the above listed simplifications, Eq. (A-20) can be
rewritten as:

e

{(zi_zi‘l) (L-%)}z QAN (A-25)

The radical on the right-hand side of this equation encompasses

a series of (i + 1) terms, each of which contains an uncertainty
factor 8Vs;. This factor varies from term to term in accordance
with term” number and in accordance with the number of the members
of the corresponding set of values of V; comprising a part of the
data set. In addition to the uncertain%y factor, each of these
terms includes a factor representing that portion of the altitude
range to which the particular uncertainty V4 applies. For the
first term of the series, corresponding to §V5, the altitude
factor consists of a single altitude element (Z] - Zp) multiplied
by a dimensionless coefficient [(a - 1 - d)/d2] which will
hereafter be called F. The altitude factor of the last term of
the series corresponding to 6éV;, also consists of a single
altitude element multiplied by a different dimensionless coeffi~
cient [(b - 1 + d)/d2] which will hereafter be called L. The
remaining terms under the radical, those terms corresponding to
the general uncertainty factor 6V3, all have altitude factors
consisting of two terms. One of these terms consists of the
altitude element (z4 - z4.3) multiplied by the dimensionless
coefficient L. The other term of the altitude factor consists
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of the altitude element (zj+1 - zj) multiplied by the coefficient
F. These two altitude elements (24 - zj-3) and (2547 - 2zj) are
the two elements which are separated by Z5 the altitude
corresponding to GVj.

If (2. z;_1) is equal to (zj+1 - 2z+), i.e., if all the
altitude eiemen%s are equal to a fixed amdunt Az, Eg. (A-25)
reduces to:

- S e '
§I = g + Az \/QF . 5v0)2 + &L + F)2 :E: @v5)2 + (L avi)z
5=1
(A-26)

If the other assumptions, which lead to the series of Egs. (A-21)
to (A-24), are applied to the coefficients defined as F and L,
these coefficient may be defined in terms of a+Az:

aAz
F=z2= ; -~ d._e - @ Ag - 1 (A-27)
d (o°Az)
-o*Az
d (oeAz)

Then, for AZ = 1000 m, o+AZ = 0.1368, a = * %% = 1.1466,

b = e 0*AZ = 90,8722, F = 0.5236, L = 0.478G, and F + L = 1.0016.
If the values of the members of the set Vg, +++, V., *++, §Vj
are known, 8I the uncertainty of the integral may be  calculated.

For purposes of illustration, it is assumed that each member
of the set . of §Vy is 6 percent of the corresponding member of the
set Vi. Thus, cOnsecutive members of the set &V,, °°°-, V5, <--
S8V; form a geometric series with a common ratio "a" previously
defined to be 1.1466. Eg. (A-26), however, calls for the sum

of squares of the members of the set GVj, i.e.,

j=i+l 5
;E& (6v) .

J
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The members of this set (SV-)2 also form a geometric series
with the common ratio a2, stuch that:

Jj 1

2 <= (dv. )2 - a? - (6V )2
(F + L) Z (sv.)z = (F +1)° [ i-1 A
j=1

a2 -1

(A-29)

Evaluating this expression as a part of Eg. (A-26) on the
basis of the specified conditions, yields a_value 2.26 nt m—2
for 8I, or 1.54 percent of 1.45 x 102 nt m'2, the 28 kilometer
value of o{p}. It is interesting to note that for a sufficiently
large number of increments in the integration, the percentage
uncertainty of the entire integral is considerably less than the
percentage uncertainty of any single element. This situation
suggests that observations of V3 be made at reasonably close
altitude intervals.

It can also be shown that since the absolute uncertainty
grows exponentially with decreasing altitude (for a fixed relative
uncertainty), the lowest 17-km region of the integration, within
which the value of V changes by a factor of 10 contributes about
99 percent of the total uncertainty in 6I. Thus, even if the
percent uncertainty in the values of V; at the upper end of the
range of integration in excess of 40 ki should be found to be
very large, these large percent uncertainties would contribute
very little to the uncertainty in I at the lower altitudes.

SUMMARY

The following statements regarding computational procedures
have been demonstrated either explicitely or implicitely in
this appendix.

(1) Only downward integration of VdZ, implying the sum
of positive values of V and I is generally acceptable
for computing o{p} over extended ranges of altitude.

(2) Any of a number of reasonable quadrature formulas will

introduce less uncertainty in o{p} than is introduced
by the uncertainty in the observed values of V.
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(3)

(4)

The greater the number of observations of V within a
particular altitude range, the smaller will be the
uncertainty in the computed values of o{p}.

When the range of altitudes involved in a particular
set of data of V vs Z, extends for 50 or more kilo-
meters, the uncertainties in V at the high-altitude
end of the range have little influence on the un-
certainty in the computer values of o{pl} at the low-
altitude end of the range of observation.

37



10.

11.

12.

38

REFERENCES

Minzner, R.A., and Ripley, W.S.: ARDC Model Atmosphere,
1956. Air Force Surveys in Geophysics No. 86 (AFCRC

TN-56-204), 1956.

Minzner, R.A., Ripley, W.S., and Condron, T.P.: U.S.
Extension to the ICAO Standard Atmosphere. U.S. Govt.
Printing Office, Washington, D.C., 1958.

Minzner, R.A., Champion, K.S., and Pond, H.L.: The ARDC
Model Atmosphere, 1959. ARCRC-TR-59-267, Air Force Surveys
in Geophysics, No. 115 (AFCRC-TR-59-267), 1959.

Smith, O.E.: A Reference Atmosphere for Patrick Air Force
Base, Florida (Annual). NASATND-595, 1961.

Court, A., Kantor, A.J., and Cole, A.E.: Supplemental
Atmospheres. Research Note, AFCRL-62-899, 1962.

Cole, A.E., and Kantor, A.J.: Air PForce Interim Supple-
mental Atmospheres to 90 km. Air Force Surveys in Geophysics,
No. 153 (AFCRL-63-936), 1963.

U.S. Standard Atmosphere, 1962. National Aeronautics and
Space Administration, U.S. Air Force, and U.S. Weather
Bureau, Govt. Printing Office, Washington, D.C.

Buell, C.E.: Statistical Relations in a Perfect Gas
Atmosphere. Kaman Nuclear, Colorado Springs, Colo., 1965.

Buell, C.E.: Some Relations Among Atmospheric Statistics.
J. Meteorol., 11, 1954, pp. 238-244.

Stidd, C.X.: A Note on the Application of the Hydrostatic
Equation to Atmospheric Statistics. J. Meteorol., 11, 1954.
pp- 165-166.

Minzner, R.A., and Morgenstern, P.: Range and Structure of
Ambient Density from 30 to 120 km Altitude. Final Report,
GCA-TR-68-15-N (Contract NAS8-220098), GCA Corp., Bedford,
Mass., 1968.

Minzner, R.A., Morgenstern, P., and Mello, S.: Tabulations
of Atmospheric Density, Temperature and Pressure from 437
Rocket and Optical-Probe Soundings During the Period 1947
to early 1965. GCA-TR-67-10-N (Contracts NASw-1463 and
NASw~1225), GCA Corp., Bedford, Mass., 1967.



REFERENCES (Continued)

13. Scarborough, J.B.: Numerical Mathematical Analysis, 2nd
Edition. Johns Hopkins Press, Baltimore, Md., 1950.

14. Wood, C.P., and Spreen, W.C.: An Investigation of the
Relation Among Some Statistics for Upper-air Pressure,
Temperature, and Density. J. Appl. Meteorol., 2, 1963,
pp. 292-297.

15. Minzner, R.A.: Second Quarterly Report, (Contract NASw-1225),
GCA Corp., Bedford, Mass., 1965.

16. List, R.S., ed.: Smithsonian Meteorological Tables, 6th
edition. Publication 4014, Smithsonian Misc. Collec.,
vol. 114, 1951.

17. Minzner, R.A., and Mello, S.: Geopotential versus Geometric
Altitude from 0 to 10,000 Kilometers for Various Latitudes.
Scientific Report, GCA-TR-66-20N (Contract NASw-1463), GCA
Corp., Bedford, Mass., 1967.

18. Minzner, R.A., Sauermann, G.0., and Faucher, G.A.: Low
Mesopause Temperatures over Eglin Test Range Deduced from
Density Data. J. Geophys. Res., 70, 1965, pp. 739-742.

19. Minzner, R.A., and Sauermann, G.0O.: Temperature Determin-
ation of Planetary Atmospheres — Optimum Boundary Conditions
for both Low and High Solar Activity. Scientific Report,
GCA-TR-66-6N (Contract NASw-1225), GCA Corp.,Bedford,
Mass., 1966.

NASA-Langley, 1971 — 13 39



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

- WASHINGTON, D. C. 20546

" OFFICIAL BUSINESS

FIRST CLASS MAIL

PENALTY FOR PRIVATE USE $300

. i e
T ; X e
[N WS, A SV T RIS

07U 001 38 51 3DS 71088 00903
AIR FORCE WEAPCNS LABORATORY /WLOL/
KIRTLAND AFB, NEW MEXICC 87117

%

ATT E. LOU BOWMAN, CHIEF,TECH. LIBRARY

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

If Undeliverable (Section 158

POSTMASTER:  pogal Manual) Do Not Refurn __ -

“T'he aeronantical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmo;pbere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

% _NATIONAL AERONAUTICS AND SPACE ACT OF 1958

~

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

~

TECHNICAL REPORTS: Scientific and
technical information consideted important,

complete, and a lasting contribution to existing,

knowledge.

: TECHNICAL NOTES: Information less broad
tn scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution

because of preliminary data, security classifica- -

tion, or other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,

- sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology

used by NASA that may be of particular

interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and

Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546



